
Improving Monte Carlo Go

Goncalo Mendes Ferreira

gonmf@sapo.pt

Abstract— The game of Go remains one of the few deter-
ministic perfect information games where computer players still
struggle against professional human players. In this work two
methods of derivation of artificial neural networks – by genetic
evolution of symbiotic populations, and by training of multilayer
perceptron networks with backpropagation – are analyzed for
the production of a neural network suitable for guiding a
Monte Carlo tree search algorithm (MCTS). This last family of
algorithms has been the most successful in computer Go software
in the last decade. Recently, deep convolutional neural networks
have shown much promise in combination with MCTS. These
require computational facilities that many computers still don’t
have however. This work explores the impact and integration of
simpler neural networks for the purpose of guiding Monte Carlo
tree searches, and improving state-of-the-art MCTS programs.

Keywords: Go, MCTS, SANE.

I. INTRODUCTION

Go is an ancient board game known for its difficulty for

computers to play. On the most common board size used, an

average game lasts 240 turns and has 2 × 10172 legal game

positions [7] – an obstacle to more traditional board game AI

approaches.

The world of computer Go was revolutionized between

2002 and 2006 with the invention of Monte Carlo tree search;

and again in 2014 to the present day with the application of

Deep Convolutional Neural Networks for move prediction and

integration with MCTS. In March 2016 for the first time a

computer program defeated one of the strongest players in the

world.

This work focuses on Monte Carlo tree search, and its

implementation on an actual competitive program; as well as

the integration of simple networks for play suggestion. The

end result was named Matilda.

II. THE GAME OF GO

Go is an abstract, deterministic, perfect information, adver-

sarial, two-player, turn-based game. The first player places a

black stone on one of the 19x19 intersections of the board. The

second player plays with white stones. The game progresses

with the players alternating in either placing a stone in an

empty intersection, or passing their turn.

A possible start of the game can be seen in Fig. 1. To win

the game it is necessary to have the most territory, and to

have the most territory it is necessary for the players stones

to remain on the board. The stones are removed when their

number of liberties reaches zero. The liberties are the unique

adjacent empty intersections of a group of stones. Stones 6,8

pictured in Fig. 1 have four liberties while stones 5,7,9 have

2 4

8 6

10 3 1

5

7

9

Fig. 1. Play in the corner

six. We can say that the white player has a larger influence

on the corner of the board, and this intuitive notion can be

understood as it being more likely for that area to belong to

white, in the end of the game. The match is scored for each

player as the number of stones on the board and the area they

circumscribe.

III. MONTE CARLO GO

In Go the problem state space is too large for minimax

state search strategies. We can abstract the large state space to

a Markovian decision problem (MDP), and use Monte Carlo

tree search to estimate the immediate action that maximizes

our chance of winning. We learn the reward distribution

– and therefore best transition for the player, by random

sampling. Each sample consists in navigating the space until a

termination criteria, and registering the outcomes of each first

transition of the sample. After a satisfying amount of samples,

we select the transition with higher average outcome.

To better traverse the search space, a traversion tree is

maintained; essentially equivalent to a exploration-exploitation

decision problem at every game state traversed. The algorithm

is usually divided in four steps, performed repeatedly over the

available time:

1) Selection – from the initial state select and traverse valid

transitions until a new state is found.

2) Expansion – expand and evaluate the new state.

3) Playout – randomly play the game until the end from the

current state, yielding a playout outcome (win or loss).

4) Propagation – propagate the playout outcome across the

transitions that led to the newly expanded state, updating

their statistics.

In attempting to reduce the regret of our MCTS sampling

we can use both statistical policies and domain knowledge

(heuristic) policies. The UCB statistical policy was discovered

in 2002 [1] and minimizes the expected reward in generic

MDP searches. Matilda first made use of UCB, and then

integrated domain heuristics. Today the domain knowledge is



sufficient to replace UCB completely, benefiting fully from the

use of AMAF [4]. With AMAF each state transition quality

is also updated if played later in the simulation.

The biasing of the exploration phase with domain knowl-

edge in Matilda uses progressive bias – a technique where the

statistics of the state are initialized with heuristic contributions

– quality and equivalency value in number of simulations.

Further techniques are integrated in MCTS: play values over

partial board patterns are precalculated; game states that are

similar are reused in the game tree search; plays that are very

similar are combined into one; remembering the last effective

response play is used to speed up traversion [2]; definitions

of play criticality, or urgency; effectivity; handicap adjustment

(techniques present in [3]) and more are used – making it a

state-of-the-art MCTS implementation.

Domain knowledge in Matilda mostly comes in the form

of local tactical evaluation functions – often exhaustive with

branching restrictions. Strategic reasoning is also performed

around clusters of loosely connected groups of stones.

IV. NEURAL NETWORKS

The use of neural networks (NN) has produced a few

strong programs before 2016, such as NeuralGo and Neuron.

With the invention of DCNN, NN have greatly increased

the strength of existing MCTS programs (Aya, Zen) and led

to the strongest program today [6]. In Matilda we modestly

started our experiments with 2-layer perceptrons with sparse

connections. The purpose was to gauge the impact of the

smallest of networks on biasing a MCTS program.

The derivation of the networks was tried both with the

SANE method [5] – evolving populations of neurons and

networks at the same time and evaluating their fitness by

playing whole games – and with classic supervised learning

with error backpropagation. Before DCNN it seemed imprac-

ticable to train a network to play 19x19 Go with supervised

learning. The SANE method aimed to tackle this and in our

experiments worked well on board sizes up to 9x9. On larger

board sizes, however, the game complexity made it’s presence

felt, and we couldn’t observe continued growth. The fitness

calculation was tried both as tournament based and against

reference opponents.

In both the SANE and error backpropagation experiments

we used simple entry features – number of liberties after play

and the contents of the board – codified with three input units

per board position. The backpropagation experiments used a

local focal field – where each neuron was only connected to

neurons up to a certain distance way (in the two dimensional

board) of the previous network layer, saving neuron connec-

tions. The input units were mapped to the corresponding board

positions. Board symmetry was not taken advantage of.

It was noticed early on that the network suffered from over

saturation – where each output neuron was so seldom activated

that a very small learning rate had to be used – and that local

focal fields actually benefited the network accuracy (in contrast

with fully connected layers). This comes in part as a surprise;

but doesn’t change the fact that we needed to find the strength

peak between value of information and NN calculation penalty.

After determining the ideal parameters of field distance the

MLP, when integrated in the final MCTS program, produced

marginally positive results. However these were obtained

without the efficient calculation of the network with GPU

or dedicated hardware, which means that even unoptimized

(reaching 73% of the original simulation speed), it contributes

enough to be worth its implementation.

Furthermore the benefit is greater the larger the board, which

coincides with where the MCTS approach most suffers. The

simple features used are also inexpensive to extract since they

are already used for tactical restrictions in MCTS.

The network as a prediction model is very weak; with an

accuracy of 2% in 19x19 and 11% in 9x9 over a dataset of

Computer Go Server (CGOS) games. Instead, in Matilda it

is used another heuristic for progressive bias. We classify all

legal plays as good (t1), neutral (t2) and poor (the rest). In

tuning we’ve found near optimal t1 = 25% and t2 = 50%.

We promote the exploration of the good plays, and hinder the

exploration of the poor. Simple as it is, the networks reach

classification accuracies of over 45% in 19x19 and 80% in

9x9.

V. MATILDA

Today Matilda is available as free software1 and ranks as 3

dan in 9x92, with its strength suffering the larger the board. It

has made some appearances in online computer tournaments,

with its best performance a 2nd place at the Kiseido Go Server

(KGS). It supports all major protocols and standards for com-

puter Go. Parameter optimization was performed with genetic,

MCTS and linear optimization algorithms. The software for

black box tuning CLOP was also used. Unfortunately it is

still a very slow process, requiring full games as optimization

samples, with each taking several minutes in 19x19 boards.

For knowledge acquisition we used game records from self-

play, the KGS, Kogo’s Joseki Dictionary and the CGOS.

REFERENCES

[1] Peter Auer, Paul Fischer, and Jyrki Kivinen. Finite-time analysis
of the multiarmed bandit problem. In Machine Learning, 2002.

[2] Hendrik Baier and Peter D. Drake. The Power of Forgetting:
Improving the Last-Good-Reply Policy in Monte-Carlo Go, 2010.

[3] Petr Baudiš. MCTS with Information sharing. PhD thesis, Faculty
of Mathematics and Physics of the Charles University, 2011.

[4] Bruno Bouzy and Bernard Helmstetter. Monte Carlo Go Devel-
opments. In Advances in Computer Games Conference ACG-10,
pages 159–174, 2003.

[5] Norman Richards, David E. Moriarty, and Risto Miikkulainen.
Evolving Neural Networks to Play Go. Applied Intelligence,
8:85–96, 1997.

[6] David Silver and Aja Huang et al. Mastering the Game of Go
with Deep Neural Networks and Tree Search, 2016.

[7] John Tromp. Number of legal Go positions, 2016. http://

tromp.github.io/go/legal.html [Online; accessed 22-
January-2016].

1Can be downloaded from https://github.com/gonmf/matilda
2Estimated from play in the Hiroshi Yamashita CGOS instance – http:

//www.yss-aya.com/cgos – where is ranked 2365 ELO.


